Detection and characterization of exoplanets from space

Heike Rauer^{1,2},

1:Institute for Planetary Research, DLR, Berlin 2:Center for Astronomy and Astrophysics, TU Berlin

Exoplanet Space Missions and Space Observatories

Space-based detection and characterization: Some examples: Detection

- Terrestrial planets
- Temperate transiting planets
- Co-planar systems

CoRoT-7b

Statistics

(Leger et al. 2009, Barros et al. 2014) $\int_{0}^{0} \int_{0}^{0} \int_{0$

- Density: 8.1 g/cm3
- Period: 0.85 days)

Kepler-10b and -10c (Batalha et al. 2010)

- Radius: 1.7Re
- Density: 5.1 g/cm3
- Period: 0.84 days)

And the second s

Kepler-37b

0.3 Re, Barclay et al. 2013

- Radius: 2.3Re
- Density: 7.1 g/cm3
- Period: 45 days)

Co-planar transiting systems

Planet detection statistics

• *Kepler* mission and radial-velocity surveys tell us:

 \rightarrow small and low-mass planets are numerous

Space-based detection and characterization: Some examples: Characterization

- Atmosphere spectroscopy
- Secondary eclipse
- Phase curves
- Albedos
- Clouds

Knudsen et al. 2007

Mass-Radius in the super-Earth domain

Super-Earths: $Rp \le 3$ Rearth; $Mp \le 10$ Mearth

- → Dashed lines: planets of different compositions.
- → Simplified cases of pure compositions. In reality there will be mixtures.

Magnitude range of past surveys

What's next?: Space-based

K-2 (Kepler 2) (NASA)

observe fields in the ecliptic plane for ~80 days/field 95 cm aperture, Earth trailing 7 - 17 mag(Koch et al., 2010) **CHEOPS** follow-up, accurate radii (ESA, launch 2017) 30 cm aperture, Earth orbit 6 - 12 mag (CHEOPS Red Book)

TESS scan the whole sky, ~1 month/field, (NASA, launch 2017) ~2% of sky at poles for 1 year 10 cm aperture, 4 telescopes, Earth-Moon orbit $4 - 13 \, mag$ (Ricker et al., 2014)

cheops

ESA's first small scientific satellite (S1)

Joint mission ESA/Switzerland PI: W. Benz, Univ. Bern, CH

Selected December 2012, adopted June 2014, launch-ready end 2017

CHEOPS science - I

Mission dedicated to the search for exoplanet transits of local, bright stars already known to host exoplanets:

 Detection and characterisation of transiting exoplanets with masses < 30 M_{earth} through wideband transit photometry (radius better than 10%)

- Follow-up, pointed observations:
 - Known exoplanets → Follow-up mission → pointed observations, know <u>where</u> and <u>when</u> to point
- (R_p/R_s)²
- Bright host stars (V<12) → precise mass measurements available /feasible, detailed knowledge of the star

CHEOPS science - II

- First-step characterisation of super-Earths and Neptunes: precision <u>masses+radii</u> → measurement of bulk density
 - Insight into physics and formation of planets
 - Identification of planets with atmospheres
 - Constraints on planet migration
- Identification of golden targets for spectroscopic characterisation
- Probing atmospheres of hot-Jupiters using phase curve measurements
 - Study of physical mechanisms and efficiency of energy transport

Credit: K. Isaak

CHEOPS Targets

Ground-based transit surveys eg. NGTS

TESS (launch 2017)

Ground-based RV surveys

Eg. HARPS, HARPS-N, HIRES, SOPHIE (on going) ESPRESSO (2017)

Open-time proposals (20%)

Kepler/K2 survey

CHEOPS in a nutshell

• Payload:

- Single-band high-precision photometer (0.4-1.1 um)
- Single CCD, 1k x 1k pixels, 13 um pitch, -40 deg C
- Compact Ritchey-Chrétien telescope, dia.=320 mm
- Entrance baffle provides high stray-light rejection
- Defocussed PSF minimises impact of spacecraft jitter
 60 kg / 60 W / 1 Gb downlink budget per day

•<u>Platform</u>: $\sim 1m^3$, ~ 250 kg class.

- adapted from commercial small platforms
- 3-axes stabilised, APE < 4 arcsec (rms)
- roll around Line of Sight, radiators pointed to cold space
- Orbit: Sun-synchronous, <u>dawn</u>-dusk, 650-<u>800</u> km altitude, 6AM LTAN
 Launch: secondary passenger → launch date driven by primary passenger
 Mission lifetime of 3.5 years (goal 5 years)

The NASA TESS Mission PI George Ricker MIT, Orbital Sciences, Harvard-Smithsonian Center for Astrophysics

Launch in 2017, 2 year mission (1 year per hemisphere) + 2 year extension Monitor 500,000 stars brighter than V=12 Earth – moon JESS will discover 1000+ small exoplanets transiting the closest, brightest stars and publicly release these immediately for all to study.

Field of view of each lens	$24^{\circ} \times 24^{\circ}$
Combined field of view	$24^{\circ} \times 96^{\circ} = 2300$ sq. deg.
Entrance pupil diameter	10.5 cm
Focal ratio $(f/\#)$	f/1.4
Wavelength range	600–1000 nm
Ensquared energy	50% within 15 \times 15 $\mu {\rm m}$ (one pixel, or 0.35 \times 0.35 arcmin)
	90% within 60 \times 60 μm (4 \times 4 pixels, or 1.4 \times 1.4 arcmin)

TESS Sky coverage

scan the whole sky, ~1 month/field, ~2% of sky at poles for 1 year

- ➢ P_{max} ∼ 10 days in general
- P_{max} >40 days surrounding the ecliptic poles
- ~ 30,000 square degrees are observed for at least 27 days
- Close to the ecliptic poles, ~ 2800 square degrees are observed for more than 80 days
- Surrounding the ecliptic poles, ~ 900 square degrees are observed for more than 300 days

TESS planets

- thousands of planets smaller than Neptune
- hundreds of super-Earths
- tens of planets comparable in size to Earth

G. Ricker et al., 2014, arXiv:1406.0151v2

Bulk characterized super-Earths

Bulk characterized super-Earths

H. Rouer, DLR, 2016-1-3(selected small planets)

The PLATO 2.0 Mission

- Selected as ESA M3 mission in February 2014
- Now at end of Phase B1
- Mission adoption review in 2016
- Launch end 2024 into orbit around L2 Lagrange point

PLATO 2.0

PLATO 2.0 is a survey mission with the prime goals to:

- detect planets down to Earth size
- characterize the bulk planet parameters
 - o radius (~3%)
 - o mass (~10%)
 - o age (~10%)
- for a large sample of planets

- for orbital distances up to the habitable zone of solar-like stars
- with well-known parameters of host stars
- provide input for improved stellar models and to galactic science

The Methods

Characterize bulk planet parameters:

e.g. for an Earth-like planet around a solar-like star of 10mag (goal 11 mag):

 \rightarrow Mean density to ~15%

CoRoT and Kepler have demonstrated that the capabilities of asteroseismology

no seismic measurement, 0.8 – 5.9 Gyr, Δage/age: 75% Example: HD 52265 (CoRoT), a GOV type, planet-hosting star, 4 months data

Seismic parameters:	Radius:	1.34	0.02 R _{sun} ,
	Mass:	1.27	0.03 M _{sun} ,
	Age:	2.37	0.29 Gyr

Planets, planetary systems and their host stars evolve

 \rightarrow Need to derive accurate planetary system age

life

Loss of primary, atmosphere

Cooling,

differentiation

Cooling, differentiation

Stellar radiation, wind

and magnetic field

Secondary atmosphere

(plate)tectonics

© H. Rauer (DLR)

Formation in proto-planetary disk, migration

PLATO Instrument

Mounting on optical bench, Camera Field-of-view: (final s/c tbd): -10 nomic distance from the ecliptic pol-

- ~49 x 49 FoV, operates in white light
- 12 cm aperture cameras, refractive 6-lens system
- **32** "normal" cameras are arranged in 4 groups of 8 cameras each, 4 x CCD, each 4510 4510px per camera,18 µm square pixels, read-out cadence 25 sec
- 2 "fast" cameras used for pointing, read-out cadence 2.5 sec, red and blue

PLATO 2.0 Sky

- A baseline observing strategy has been defined for mission design:
 - 6 years nominal science operation:
 - 2 long pointings of 2-3 years
 - step-and-stare phase (2-5 months per pointing)
- The final observing strategy will be fixed 2-3 yrs (tbd) before launch.

- 1,000,000 stellar lightcurves
- >7,000 detected planets around stars <13 mag
- >100 fully characterized planets around bright stars, including terrestrial planets in the HZ of solar-like stars

PLATO Guest observer Science

- The core program focusses on getting accurate parameters of exoplanets and their host stars.
- Complementary Science includes areas such as:
 - 1) Hot star pulsations
 - 2) Red giants as tracers of galactic age
 - 3) CV's
 - 4) ...
- There will be regular calls for guest observer targets 8% of science telemetry is for guest observers

Summary planet transit detection and bulk characterization

	ground based surveys	M dwarf surveys	K2, TESS, CHEOPS	PLATO 2.0
hot gas giants	YES	YES	YES	YES
hot Neptunes	SOME	YES	YES	YES
hot super- Earths	maybe	YES	YES	YES
warm gas giants	x	SOME	SOME	YES
warm Neptunes	x	SOME	SOME	YES
warm super- Earths & Earths	x	SOME (very cool dwarfs)	SOME (around M dwarfs)	YES

A timeline of exoplanet characterization

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

Gaia

K2

CHEOPS

??

JWST

PLATO

30m class ground-based telescopes (E-ELT, GMT)

missions on spectroscopic follow-up?

NASA/JPL-Caltech

Synergies between PLATO 2.0 and GAIA

complementary discovery spaces:

GAIA: giant planets in outer orbits

PLATO 2.0: all planet sizes up to the habitable zone of solar-like stars

→ dynamical evolution of systems
 → Planet masses for long-period planets

from Casertano et al. (2008)

expected yield of planets by GAIA: synergies with PLATO 2.0

Δd (pc)	N_{\star}	Δa (AU)	$\Delta M_{\rm p}$ ($M_{\rm J}$)	N _d	N _m
0-50	~10,000	1.0-4.0	1.0-13.0	~1400	~700
50-100	~51 000	1.0-4.0	1.5-13.0	~2500	~1750
100-150	~114 000	1.5-3.8	2.0-13.0	~2600	~1300
150-200	~295 000	1.4-3.4	3.0-13.0	~2150	~1050

from Casertano et al. (2008)

geometric transit probability ~0.5%

GAIA: ~8500 planets detecte

PLATO 2.0: 430 of them will have transits

- GAIA will constrain the orbital parameters, in particular the orbital inclinations, so we will know which systems to look at
- PLATO 2.0 will further characterize those planets