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To build a habitable planet, you need:

* 1) elements important to life as we know it: CHONPS +
metals (Fe, Cu, Ni, Mo, Mn, etc.)

— Seems to be readily available

* 2)sunlight Ve ...
— Underground life is not well understood and hard to
find around other stars

— Seems to be readily available except for rogue planets

e 3) liquid water (universal solvent)
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Setting tne stage:.. .
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"‘ ' hydrodynamic vs. nonthermal (stellar wind
- erosion, charge exchange, polar wind, etc. B field)

— Weathering (climate stability, Abbot+ 2012,
Kitzman+ 2015, but also nutrients...)

— Chemistry (UV, protons, gamma-ray, etc.) and Life
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e 3) It IS possible to distinguish
photochemically produced O2. But O2
buildup as a result of water loss Is an
open Issue.



"The Loss of Oceans
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Evaporation from the surface
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The Early Evolution of Type | and Il
Planets Venus became Dry Early
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Importance of Atmospheric N,
Pressure on Ocean Stabillity

Wordsworth and Pierrhumbert 2014

moist regime

dry regime




It is possible to find out the N, concentration in an
exoplanetary atmosphere (Schwieterman+ 2015)
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ter loss has 4 bottlenecks

Partic
ollisionl. 933) wmrm

- — ‘gravity can escape

,- Overcom collisions with background species —
- diffusion limited -- conservation of momentum I
e (Fiunten 1975)

Troposphere: H,O controlled by T

Evaporation from the surface




Densﬂy‘St‘ructure of the Earth’'s Atmosphere
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Upper Atmosphere Structures of Venus-and
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Temperature Structures in the Thermospheres of

Slbencestrial Planets in the Solar System Today
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Responses of N,-O,-rich atmosphere to strong XUV
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Under Strong XUV Radiation, the magnetosphere,

- mesphere, and ionosphere could all eecupy

)y san e Space! B fieldsprotection may*Be incomplete.
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A hydrostatic atmosphere vs. a

Figure 1.5 Schematic cross section of the atmosphere illustrating the homosphere, hetero-
sphere, and the exosphere, in which molecular trajectories are shown.



Atmosphere Escape Processes
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Planetary BpRERatmosphere In the hydrodynamic regime

BRLInK |- more efficient escape processesswereat
near the exobases conservatiomn of energy
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Conservation of total escape rate
In the hydrodynamlc reglme
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Ave thererprocesses whichcan™
AEPOSIt energy.efficiently into
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3 5.4, Kislyakova Talk

) pora/ Variations and Impact
= "’of Stellar Wind on A tmosphere
- and Habitability: P5.4, 5.7-8,
5.10, 5.13, 5.15-16
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M dwarfs as the fast track to find
exoplanet life:

1)There are of them;

2) They live very long time;

3)It’s habitable planets around them;
4)It’s around them.

5)Tidal Locking iIs not an issue.

M

http://en.wikipedia.org/wiki/File:Morgan-Keenan spectral classification.png
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CO, Atmospheres of Most Super Earths are Safe
But other cornpositions ....?
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THE HABITABLE ZONES OF PRE-MAIN-SEQUENCE STARS

Ramses M. RaMIREZ! 2+ AND Lisa KALTENEGGER'*
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PUBLISHED ONLINE: 16 FEBRUARY 2015 | DOI: 10.1038/NGEO2372

Water contents of Earth-mass planets around
M dwarfs

Feng Tian™ and Shigeru Ida?

ASTROBIOLOGY

Volume 15, Number 2, 2015
@ Mary Ann Liebert, Inc.
DOl: 10.1089%/ast.2014.1231

Extreme Water Loss and Abiotic O, Buildup on Planets
Throughout the Habitable Zones of M Dwarfs

R. Luger™ and R. Barnes'+*



The HZ of M dwarfs migrates inward significantly

: | Ramirez and Kaltenegger 2014

5| Thereis along-lived
magma ocean on the
**1  surface!
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Flanet Statistics Around 1000 Stars

Stellar of A Z ¥ of
Mass(Solar Mass) 'lanets n]lanets 'lanets 'lanets Earth—twins

Earth—mazz planetz are defined to have mazz between 0.1 and 10 Earth ma=s=zes

Earth—twinsz are defined as Earthmass planets with surface water between Venusz water content and 1% mass fraction.

M dwarfs:  Sun-like Stars:
- 0.1%~1% — 10% probability
probability to
have Earth-
twins (0.1-10
Me.» + Water

fraction >1e-8 and
<1e-2)
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Habitable Trinity is a newly proposed concept of a habitable environment. This concept indicates that the
coexistence of an atmosphere (consisting largely of C and N), an ocean (H and 0), and a landmass
(supplier of nutrients) accompanying continuous material circulation between these three components
driven by the Sun is one of the minimum requirements for life to emerge and evolve. The life body
consists of C, O, H, N and other various nutrients, and therefore, the presence of water, only, is not a
sufficient condition. Habitable Trinity environment must be maintained to supply necessary components
for life body. Our Habitable Trinity concept can also be applied to other planets and moons such as Mars,
Europa, Titan, and even exoplanets as a useful index in the quest for life-containing planetary bodies.




As a result of high FUV/NUV ratio, abiotically produced
O2 and Os could be maintained in the atmosphere.
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But 10-3 level of CO is Easy to Detect.

(d) _ Wang et al. 2015
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2000 bars of O, could build up!
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Buildup of Dense O, Atmospheres is Sensitive to the Initial Ocean
Inventory. And it’s hard to keep a low O, atmosphere.
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M dwarfs as the Fast Track Toward
Exoplanet Life Detection”?

1) Mid M dwarfs likely have bimodal distribution of water on their
HZ planets
water rich ones from formation (Alibert talk on Tuesday and
Lena talk tomorrow);
Water poor ones from formation (Lugaro Talk, Haghighipour
Talk) and PMS evolution (Meadows Talk, this talk)
2) Too much water is bad (Abbot+ 2012, Dohm and Maruyama
2014, Kitzman+ 2015, Noack talk tomorrow).
3) Maybe some late processes or unknown physics can help. But
how to distinguish a planet with 4-km ocean from one with 100-
km ocean?

In addition, it’s difficult to determine the mass of a HZ exoplanet
around early M dwarfs — mid M dwarfs are better (Newton talk)



Final Thoughts: How to
Determine Planet Habitability?

1) For M dwarfs, perhaps this will be
achieved by observations of

2) Alternatively, observing planets around
stars at different age, especially PMS M
dwarfs -- Understand the evolution of
uninhabitable planets (Meadows Talk)
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