On the feasibility of giant planet formation via disk gravitational fragmentation

Eduard Vorobyov: The Institute of Astrophysics, The University of Vienna, Vienna, Austria and

> **Research Institute of Physics, Southern Federal University, Rostov-on-Don, Russia** In collaboration with: Shantanu Basu, The University of Western Ontario, Canada

Giant planets: Mass vs. orbital distance

At r>10 AU, the growth time of a solid core with M>10 M_{earth} is greater than the mean gas disk lifetime, 2-3 Myr

Isolated disk models are misleading when studying disk gravitational instability and fragmentation

Mass loading from infalling envelope is the key factor causing the disk to fragment (Vorobyov & Basu 2005, 2006)

Global models that self-consistently follow Cloud \rightarrow Disk transition

- Cons: Not full 3D. Two-dimensional thin-disk with approximate reconstruction of the vertical structure (not razor-thin!)
- **Pros**: 1) Self-consistently follows cloud \rightarrow disk formation
 - 2) Long integration times (~ Myr)
 - 3) High resolution (<1 AU at r<100 AU)

Long-term evolution of self-gravitating circumstellar disks

		<u> </u>	
0.07 Myr	0.09 Myr	0.11 Myr	
9			Initial conditions: Collapsing cloud core with
0.12 Myr	0.17 Myr	0.19 Myr	$M_{\rm core} = 1.07 M_{\odot}$
	500 AU		β = 0.7%
0.295 Myr	0.33 Myr	0.43 Myr	
	5	6	β is the ratio of rotational to gravitational energy in the core

Properties of fragments

Clump masses: 1 -- 100 M_{Jup} Clump radii: a few AU – a few tens of AU.

Adiabatic cores with rotation and pressure balancing self-gravity.

Number of fragments: up to 10, depending on the initial cloud mass and angular momentum

Disk fragmentation domain in the beta – M_{core} phase space

 $M_{core} > 0.3 M_{\odot}$; $\beta > 0.3\%$, $M_{disk} > 0.07 M_{sun}$

Initial core mass function in the Aquila region (Andre et al. 2010)

Critical core mass 0.3 M_{sun}

Depending on the distribution of β -parameter (from 0.01% to 7%, Caselli et al. 2002), 40% - 70% of collapsing cores are supposed to form fragmenting disks

(Vorobyov & Basu 2015)

Survival of fragments. Runaway inward migration.

(Vorobyov & Basu 2005, ApJL; Vorobyov & Basu 2006, 2010, 2015 ApJ)

Inward migration of fragments

Initial core mass = 1.0 Msun

Survival of fragments

Fragments need to form in the T Tauri phase to avoid fast migration (Vorobyov & Basu 2010; Kratter et al. 2010, Vorobyov 2013)

 $\Gamma_{in} = \mathbf{r} \quad \mathbf{F}_{in} > 0$ $\Gamma_{out} = \mathbf{r} \quad \mathbf{F}_{out} < 0$ $\frac{d\mathbf{L}_{fr}}{dt} = \mathbf{\Gamma}_{in} + \mathbf{\Gamma}_{out}$

Fragments may stay at quasistable orbits for as long as $\Gamma_{in} > abs(\Gamma_{out})$

In the early phase this inequality almost always breaks due to

- 1) continuing disk growth via accretion from the infalling envelope.
- 2) sub-Keplerian velocity of the accreted material

Formation and evolution of a fragmenting disk $(M_{core} = 1.7 M_{\odot}; \beta = 0.56\%)$

Disk experiences vigorous fragmentation, but most fragment migrate onto the star

The embedded phase ends at 0.65 Myr

Another episode of disk fragmentation in the T Tauri stage

the survived fragment opens a gap and settles on a quasi-stable orbit

Two fragments survived through the embedded phase

> Only one fragment finally survives

Six models (out of >60) showing the formation of brown dwarfs and giant planets

Maximum eccentricity of the orbits is 0.07

	modeling	observations	Conclusions and reasons for mismatch
Object mass	3.5 – 43 M _{Jup}	1.7 – 40 M _{Jup}	
Orbital distance	178 – 415 AU	10 – 7000 AU	 very wide separation planets (>500 AU) fail to form because disks do not grow to radii >> 500 AU. runaway inward migration of fragments hinders planet formation at radii <150 AU
Mass of the host star	$0.75 - 1.2 \; M_{\odot}$	$0.16 - 2.1 \; M_{\odot}$	• Low-mass stars (<0.7 $\rm M_{\odot})$ have also low-mass disks – insufficient for gravitational fragmentation.

Disk fragmentation cannot explain the whole spectrum of observed wide-orbit planets! (Vorobyov A&A, 2013, 552, 129)

Inward migration and tidal downsizing

High resolution

0.1— 0.7 AU in the inner 100 AU

Formation of giant planets revisited

