A two-band theoretical radiative physical model for predicting the *Greenhouse (GH) Effect on Earth-like planets

Giora Shaviv Nir Shaviv Smadar Bressler

*Greenhouse Effect is the response of the atmospheric P(z)-T(z) profile to its radiative properties as determined by its chemical composition and by the astronomical configuration

Plan of the talk

The scope: Our Full-Line (FL) radiative transfer model (Shaviv et al, 2011)

The basis: Imposing energy conservation

The model: Multi-Wavelengths Two Band (TBMW)

The representation: A $T_{surf} \{ Log(*\tau_{vis}) / Log(*\tau_{fir}) \}$ plane $*\tau_{vis}$ and τ_{fir} are the optical depth averages κdz , in the short-wave and far infrared

The results: Estimation of the GH/anti-GH effects for different atmospheric gaseous species

The scope: Our Full-Line (FL) model for GH calculations

The radiative fields and spectral details

The key to analyzing the GHE in detail!

The two-stream radiative equation

$$\pm \frac{dI^{\pm}}{dz} = -\left[\kappa(z,\lambda) + \sigma(z,\lambda)\right]I^{\pm} + \sigma(z,\lambda)J(z,\lambda) + \kappa(z,\lambda)B(T(z),\lambda)$$

z - height; λ - wavelength; κ -absorption coeff; σ - scattering coeff; *B* - the Planck function

Where:
$$I = \begin{pmatrix} I^+ \\ I^- \end{pmatrix}$$
and $J(z, \lambda) = \frac{I^+(z, \lambda) + I^-(z, \lambda)}{2}$ I - specific intensityJ - mean intensity

At first Approximation we assume: Isotropic scattering only No convection No diurnal changes - sun is at zenith No clouds or ocean feedback

The basis: Imposing Energy conservation

The steady state approximation: Energy conservation in every layer

Energy conservation over flux

$$0 = \frac{\partial F_{\text{net}}}{\partial \tau} = (\gamma_1 - \gamma_2)F^+ + (\gamma_1 - \gamma_2)F^- - (S^+ + S^-) + \pi F_s \exp(-\tau/\mu_0)$$

Numeric model Integrated fluxes - total downward and total upward

$$F_{\rm net} = \int I \mu \ d\Omega = F^+ - F^-$$

Toon et al, 1989

Energy conservation over heat

$$\int_0^\infty k_{\rm e}(z,\lambda) [J(z,\lambda) - S(z,\lambda)] \,\mathrm{d}\lambda = 0$$

Analytic model Integrated specific intensities - each wavelength contributes Neglecting the 'vis' range Rutily et al, 2008

Parmentier & Guillot, 2014

Our steady state condition

Shaviv, Shaviv & Wehrse, 2010

$$\int_{z_i}^{z_{i+1}} \frac{dQ(z)}{dt} dz = \sum_{j=1}^{N_{tot}} \tau(z, \lambda_j) \left[J_i(\lambda_j) - B(T_i, \lambda_j) \right] \Delta \lambda_j = 0$$

Numeric model

Multi-Wavelengths integration

Over Full-Lines or Two-Bands

Calculating P-T and T_{surf} by the double-iteration scheme

Unique features of our model 1. The TOA boundary condition Flux in = Flux out

$$\frac{1}{4}\frac{R_*^2}{d^2}\int_0^\infty I^*(\lambda)d\lambda = \int_0^\infty I^+(Z,\lambda)d\lambda$$

is an outcome of the model and not an assumption

2. Tsurf and the P-T profile are free parameters

3. The double iteration scheme & the steady state energy condition are used

Thus, the calculation of the complete feedback of the atmospheric radiative field is obtained for changes in the absorption coefficients The model: Multi-Wavelength Two Band (TBMW)

The bands and fluxes in a semi-grey atmosphere

The fluxes

The Two-Band lower boundary condition

 $(1-a)I_{\star,SW} + I_{A,\downarrow} = (1-a)I_{p,SW} + I_{p,FIR}$ Shaviv et al, 2011

The TBMW steady-state equation

$$\int_{z_{i}}^{z_{i+1}} C_{V} \frac{dT(z)}{dt} dz = \langle \tau_{vis,i,j} \rangle \Delta \lambda_{vis} \sum_{j=1}^{N_{vis}} [J_{vis,i,j} - B(T_{i})] + \langle \tau_{fir,ij} \rangle \Delta \lambda_{fir} \sum_{j=1}^{N_{fir}} [J_{fir,i,j} - B(T_{i})] = 0$$

Bressler et al, 2016, in press 'vis' (H1) 'fir' (H2)

The short-wave'vis' range - non-*LTE

$$\ln \left< \tau_{\rm vis,S} \right>_i = -\frac{\int_{z_i}^{z_{i+1}} dz \int_{\nu_1}^{\nu_2} B(T_*,\nu) e^{-\tau_{\rm tot}(\nu,T_{\rm atm}(z))} d\nu}{\int_{z_i}^{z_{i+1}} dz \int_{\nu_1}^{\nu_2} B(T_*,\nu) d\nu} \quad with \ 0 < \nu_1 < \nu_2 \le \lambda_{\rm rad}$$

*LTE - Local Thermodynamic Equilibrium

The Simpson solution

Bressler et al, 2013

The long-wave'fir' range - *LTE

$$\langle \tau_{\rm fir,S} \rangle_i = \frac{4}{3} \left[\frac{\int_{z_i}^{z_{i+1}} dz \int_{\nu_1}^{\nu_2} B(T_{\rm atm}(z),\nu) d\nu}{\int_{z_i}^{z_{i+1}} dz \int_{\nu_1}^{\nu_2} \frac{B(T_{\rm atm}(z),\nu) d\nu}{1+3\tau_{\rm tot}(T_{\rm atm}(z),\nu)/4}} - 1 \right] \quad with \ \lambda_{\rm rad} \le \nu_1 < \nu_1 < \nu_1 < 1$$

$$T_p \approx \left[\left(1 + \frac{3\tau_{\text{tot}}}{4} \right) \frac{(1-a)}{4} \left(\frac{R_{\star}}{d} \right)^2 \right]^{1/4} T_{\star}$$

Shaviv et al 2011

Thursday, February 11, 16

Bressler et al, 2016, unpublished results

Wavelength, Å

*If J ≠ B, the assumption of LTE is violated
*The diffusion approximation cannot be applied for the 'fir'
*The 'vis' absorption cannot be neglected
*Radiative transfer can be calculated only numerically
The deviation from LTE is accounted for by iterating over the specific intensities used in the weight functions

Initial results of our FL and TBMW models and other band averages*

Bressler et al , 2016 in press

*The Rosseland mean breaks down in atmosperic windows

*97.5% correspondence between models *We are now calculating additional cases *The representation:* A $T_{surf} \{ Log(\tau_{vis}) / Log(\tau_{fir}) \}$ plane

The T_{surf} { $Log(\tau_{vis})/Log(\tau_{fir})$ } plane

* T_{surf} is calculated for arbitrary τ_{vis}/τ_{fir} pairs

* GH and a-GH on the same plane

*The purple dots represent real spectral band averages

A non-LTE 'vis' band & LTE 'fir' band averages

Bressler et al , 2016 in press

Is the Earth in the stability region?

An illustration for saturation

*The integration over the entire spectrum allows for radiation escape from the 'vis'

*This leads to saturation - a thermodynamic solution for T_{surf}

Determination of the Habitable Zone (HZ)

The results: Estimation of the GH/anti-GH effect for different atmospheric species

GHE dependence on Relative Humidity (RH) of water vapor

Standard Atmosphere composition

* The 'vis' range moderates the GHE

* Increase of RH blocks incoming radiation at higher layers in the 'vis' wavelengths

Bressler et al , 2016 in press

The contribution of CO₂ and water vapors to the GHE

*CO2 is a stronger GH agent than water vapor

*Combinations of atmospheric species yield different GHE

Bressler et al , 2016 in press

Doubling the CO₂

RH	xCO_2	$\log_{10} \tau_{vis}$	$\log_{10} \tau_{fir}$	$T_{surf}(K)$
0%	1	-1.03589	-0.400832	262.154
	2	-1.00533	-0.349574	263.577
		diff.		+1.423
10%	1	-0.0960	0.2615	288.869
	2	-0.0940	0.2855	290.716
		diff.		+1.847
50%	1	0.02223	0.47682	304.156
	2	0.02324	0.49588	305.965
		diff.		+1.809

Bressler et al , 2016 in press

* T_{surf} rise is of the same order of magnitude of radiative forcing ~3K (IPCC Report, 2013)

* This is an upper limit to the GHE T_{surf} change

* Scattering, clouds, diurnal changes, etc. will reduce it further

Earth R

Thank you!

