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*Linking planet formation and internal structure is not easy*

Need to combine planet formation, evolution, and internal structure self-consistently
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Two models for giant planet formation
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A standard core accretion model for Jupiter’s formation
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A standard core accretion model for Jupiter’s formation
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* Reducing formation timescale by migration:

amigrating | in situ formation
planet starting at 5 AU
8 AU (no gap)
Total heavy element mass
A migrating Jupiter (core+envelope) and gaseous

(H/He) mass vs. time, until

has M, ~30 Mg
cross-over mass is reached.

log(M / M)

/ * Reducing formation timescale by grain
Alibert et al, 2005 { | settling (opacity reduction):
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Core Accretion: predicted composition

Giant planets formed by CA can have a large range of metallicities:

Z = (Mc +Mz_env)/Mtot

planet

Z < Z, :accreted gas is metal-poor & core mass is small

planet

Z ~ Z, :accreted gas has stellar composition & core mass is small or

planet
accreted gas is metal-poor & core mass is large

Zojanet > L4+ accreted gas has stellar composition & core mass is large and/or
much planetesimals are accreted during rapid gas accretion

... and of course other options are possible...
..the more massive the planet, the more metal-poor it is...

see Helled et al. 2011, 2014 for details



Core mass predicted from formation models

* Innermost region above a ~2 Mg, core can have a very high heavy-element
mass fraction but extremely high temperatures (104 K).

* Does this region join the core or does it mix with the gaseous envelope?

* What happens during runaway gas accretion?

o r'p|s tcross MZ Mc,z=0.9 Mc,z=0.5 IVIcmix
(gcm?)  (km)  (Myrs) (M) (Mg) (Mg) (Mg)
Case | 10 100 0.95 16 15 17.5 1.66
Case ll 10 1 0.9 15.9 15.1 18.4 2.33

Case llI 6 100 1.54 7.6 5.6 7.7 1.03

Q Core mass depends on the formation model, but also on
the way we define the core....
\"
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Heavy-element distribution in giant protoplanets

The heavy elements are gradually distributed in proto giant planets.
The gradient in heavy depends on o - the higher o is, the less gradual is the
distribution in heavy elements.

***No mixing is allowed***
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Defining the core according to convection (mixing) criterion

* The core mass (region) is defined as the innermost stable region in the planet,
Mc,,,- In this case, Jupiter’s core mass is found to be significantly smaller, 1--2.3 M.
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Predicted core mass is small even for high o cases, with a total high M,




Dependence on heavy element composition
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The distribution before and after mixing at crossover
mass for Case | when the heavy elements are
represented by SiO,/H,O.

The assumed high-Z material
has a negligible effect on the
stability-convection criterion,
and therefore, on the derived
distribution of heavy elements.



Jupiter’s evolution for different primordial structure
(but the same bulk composition)
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Advances in GP theory for interpretation of the M-R relation

Equation of state
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Advances in GP theory for interpretation of the M-R relation
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Advances in GP theory for interpretation of the M-R relation
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Advances in GP theory for interpretation of the M-R relation
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Advances in GP theory for interpretation of the M-R relation
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The Importance of planetary evolution & age

* Giant planets may have compositional gradients that can affect their cooling rate.
* Planetary internal structure (and even composition) can change with time!

* Planetary evolution cannot be neglected - it can affect the radius and the
distribution of materials within the planet. The mass-radius diagram is time
dependent, M-R (time).

We need to constrain the
stellar/planet age



Conclusions and future work

There is no unique composition predicted from the CA model;, and the
core mass is not well-defined. The bulk compositions of giant planets
depend on their birth environment.

Processes such as differentiation, mixing, accretion, outgassing, core
erosion, atmospheric loss, impacts & collisions should be consider in
planetary formation and evolution models.

In‘order to better characterize (giant) planets we need a new generation
of planetary models combining: formation, evolution, and internal
structure.









Re-distribution of heavy elements

The distribution of heavy elements can change with time due to convective mixing,
while the core mass can decrease with time by core erosion.
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Icy and even MgO cores are

expected to erode with Jupiter
5| time (depending on planet CMB

mass (and age))
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Convective mixing can change the heavy-element
distribution as the planet evolves. Mixing efficiency
depends on the composition and its distribution.

Simulations predict water ice is unstable above
3000 K when exposed to metallic hydrogen.
Work by B. Militzer and collaborators...




Jupiter’s growth — different CA formation models
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The dotted and solid lines correspond to planetesimal sizes of 100 km and 1 km, respectively. The black and

blue lines show the heavy-element and gaseous masses. The green and red lines correspond to calculated
core masses when the “core region” is defined as the innermost regions with Z=0.5 and Z=0.9, respectively.



