On the combined action of disc migration and planet-planet scattering in the formation of giant planetary systems

Anne-Sophie Libert naXys, University of Namur, Belgium

Collaborators: S. Sotiriadis, B. Bitsch, A. Crida

Planetary System Architecture

- Observations: the orbits of extrasolar systems are more various than the circular and coplanar ones of the Solar system
- The search of Earth-like planets in the RV-detected planetary systems calls for a good understanding of giant planetary system architecture
- Limits of the observational methods: free parameters in the dynamical studies of the detected systems, especially the inclinations
- Idea : To resort to formation theories to have additional information about giant planetary systems

Late-stage formation of giant planetary systems

- During the disc phase: Giant planet migration (Type II)
(e.g. Lin \& Papaloizou 1986a, Kley 2000, Nelson et al. 2000)
=> eccentricity and inclination excitations
(e.g. Thommes \& Lissauer 2003, Libert \& Tsiganis 2009, Teyssandier \& Terquem 2014)
- After the disc phase: Planet-planet scattering
(e.g. Weidenschilling \& Marzari 1996, Ford \& Rasio 2008, Juric \& Tremaine 2008,

Chatterjee et al. 2008)
=> eccentricity and inclination excitations

+ Initial conditions problem
- Combined action of both previous mechanisms:

Planet-planet interactions DURING migration in the protoplanetary disc
(e.g. Adams \& Laughlin 2003, Matsumara et al. 2010, Libert \& Tsiganis 2011)

No inclination damping

Our work

Generalization of Libert \& Tsiganis 2011

- 11000 simulations of 3 giant planet systems in the late stage of the disc (SYMBA, 2×10^{5} computational hours)
- planets with mass in $[1,10] \mathrm{M}_{\text {Jup }}$, initially outside the snowline, on quasi-circular and coplanar orbits
- different initial system configurations, planetary mass ratios, disc masses
- $\tau_{\| I}=$ viscous accretion timescale $x \max \left(1, M_{p} /\right.$ local disc mass) (Baruteau et al. 2013) for the outer planet only
- exponential decrease of the disc mass, with a dispersal time of $\sim 1 \mathrm{Myr}$
- eccentricity and inclination damping formulae provided by the 3D hydrodynamical simulations of Bitsch et al. 2013

ECC

$$
\begin{aligned}
& \mathcal{F}_{\mathrm{e}}\left(i_{\mathrm{P}}\right)=-\frac{M_{\text {disc }}}{0.01 M_{\star}}\left(a\left(i_{\mathrm{P}}+i_{\mathrm{D}}\right)^{-2 b}+c i_{\mathrm{P}}^{-2 d}\right)^{-1 / 2} \\
& \mathcal{G}_{\mathrm{e}}\left(i_{\mathrm{P}}, M_{\mathrm{P}}, e_{\mathrm{P}}\right)=12.65 \frac{M_{\mathrm{P}} M_{\text {disc }}}{M_{\star}^{2}} e_{\mathrm{P}} \exp \left(-\left(\frac{\left(i_{\mathrm{P}} / 1^{\circ}\right)}{\tilde{M}_{\mathrm{p}}}\right)^{2}\right) \\
& a_{\mathrm{e}}\left(M_{\mathrm{P}}, e_{\mathrm{P}}\right)=80 e_{\mathrm{P}}^{-2} \exp \left(-e_{\mathrm{P}}^{2} \tilde{M}_{\mathrm{p}} / 0.26\right) 15^{\tilde{\tilde{\mathrm{H}}}_{\mathrm{p}}}\left(20+11 \tilde{M}_{\mathrm{p}}-\tilde{M}_{\mathrm{P}}^{2}\right) \\
& b_{\mathrm{e}}\left(M_{\mathrm{P}}\right)=0.3 \tilde{M}_{\mathrm{p}} \\
& c_{\mathrm{e}}\left(M_{\mathrm{P}}\right)=450+2^{\tilde{M}_{\mathrm{P}}} \\
& d_{\mathrm{e}}\left(M_{\mathrm{P}}\right)=-1.4+\sqrt{\tilde{M}_{\mathrm{p}}} / 6 .
\end{aligned}
$$

INCL

$$
\begin{aligned}
a_{i}\left(M_{\mathrm{P}}, e_{\mathrm{P}}\right)= & 1.5 \times 10^{4}\left(2-3 e_{\mathrm{P}}\right) \tilde{M}_{\mathrm{p}}^{3} \\
b_{i}\left(M_{\mathrm{P}}, e_{\mathrm{P}}\right)= & 1+\tilde{M}_{\mathrm{p}} e_{\mathrm{P}}^{2} / 10 \\
c_{i}\left(M_{\mathrm{P}}, e_{\mathrm{P}}\right)= & 1.2 \times 10^{6} /\left[\left(2-3 e_{\mathrm{P}}\right)\left(5+e_{\mathrm{P}}^{2}\left(\tilde{M}_{\mathrm{p}}+2\right)^{3}\right)\right] \\
d_{i}\left(e_{\mathrm{P}}\right)= & -3+2 e_{\mathrm{P}} \\
g_{i}\left(M_{\mathrm{P}}, e_{\mathrm{P}}\right)= & \sqrt{3 \tilde{M}_{\mathrm{p}} /\left(e_{\mathrm{P}}+0.001\right) \times 1^{\circ}} \\
\mathcal{F}_{i}\left(M_{\mathrm{P}}, e_{\mathrm{P}}, i_{\mathrm{P}}\right)= & -\frac{M_{\mathrm{disc}}}{0.01 M_{\star}}\left[a_{i}\left(\frac{i_{\mathrm{P}}}{1^{\circ}}\right)^{-2 b_{i}} \exp \left(-\left(i_{\mathrm{P}} / g_{i}\right)^{2} / 2\right)\right. \\
& \left.+c_{i}\left(\frac{i_{\mathrm{P}}}{40^{\circ}}\right)^{-2 d_{i}}\right]^{-1 / 2}
\end{aligned}
$$

Valid for $\mathrm{e}<0.6$ and mass in $[1,10] \mathrm{M}_{\text {Jup }}$

Strong damping!

de/dt=0.001/orbit, i.e. the planet will lose ~ 0.085 in ecc in $10^{4} \mathrm{yrs}$ $\mathrm{di} / \mathrm{dt}=0.01^{\circ} \%$ orbit, i.e. the planet will lose $\sim 8.5^{\circ}$ of incl in $10^{4} \mathrm{yrs}$

Goals

- Impact of the eccentricity and inclination damping on the final system configurations (a-e-i)
- Dynamical mechanisms producing inclination increase
- Mean-motion resonance captures during the gas phase

Three-body resonance

- Exponential decay of the gass disc: inclination-type resonance produces high inclinations maintained for a long time
- Capture in a 1:2:4 Laplace resonance
- Subsequent increase of the eccentricities
- When the eccentricities are high enough, inclination-type resonance
- Strong damping: planets back to the midplane

Semi-major axis distribution

Best agreement for $16 \mathrm{M}_{\text {Jup }}$

Eccentricity distribution

Perfect agreement up to 0.35 , lack of highly eccentric orbits

Eccentricity distribution

Removing single planet systems, good agreement up to 0.55

Perfect agreement up to 0.35 , lack of highly eccentric orbits

Inclination distribution

3% of the systems have mutual inclination $>10^{\circ}$ at the dispersal of the disc

Highly mutually inclined system in a Kozai-resonant state

- Capture in a three-body resonance + increase of the eccentricities and inclinations
- Destabilization of the system
- The remaining two-planet system is in a Kozai-resonance state with large eccentricities and inclinations variations of the inner planet + decoupling of the orbital eccentricities (Libert \& Tsiganis 2009)

Long-term evolution

- Orbital adjustements due to planet-planet interactions can occur on a longer timescale AFTER the disc phase
- Number of planets at 1.4 d 6 and 1 d 8

	1 planet	2 planets	3 planets
1.4 d 6	7%	50%	40%
1 d 8	12%	53%	32%

- No significant change on the semimajor axis and eccentricity distributions

- Increase of the inclinations

5% of the systems have mutual inclination $>10^{\circ}$ on long-time scale

Summary

- Good agreement between our simulations and the observed population of extrasolar systems
- Eccentricities well-diversified at the dispersal of the disc, despite the strong damping exerted by the disc
- Very efficient damping exerted by the disc on the inclinations: most of the planets end up in the midplane
- Inclination-type resonance and planet-planet scattering events during/after the gas phase induce inclination excitation: 5% of highly mutually inclined systems ($>10^{\circ}$) in our population
- Future work: study of terrestrial planets in our population of giant planetary systems + their habitability

Thank you for your attention

