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Lugaro et al. (2014, 2016) on the presolar history of solar system matter
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Why are radioactive nuclei of interest for habitability?
Because their decay can generate heat

angular momentum
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232Th \; Th and U make up 30%—50% of the Earth’s energy
14 Gyr budget. Would this be similar in other terrestrial
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2327h 3, Unterborn et al. (2015) also presented a thermal
14 Gyr model to evaluate the effect of different amount of
Th in extrasolar terrestrial planets.

Power produced by radiogenic sources (TW)
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larger energy budgets.



232Th % ,

™~ Why such a spread in Th? | *
14 Gyr e
The cosmic origin of the actinides (atomic mass > 88, e.g. U,

Th, Pu, Cm) is attributed to the rapid neutron-capture process
(the r process).

Its astrophysical site is still
debated but evidence is
converging on neutron star
mergers.

These are are relatively rare
events, which means that
we expect the distribution of
their ejecta in the interstellar
medium to be relatively
inhomogeneous




Hotekezaka et al. (2015) calculated the evolution of 244Pu

(80 Myr) in the interstellar medium with
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26p| <» From meteoritic analysis we can infer the
abundance of %Al when the Sun was born
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0.7 Myr abundance of #°Al when the Sun was born
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The origin of such high abundance of %°Al
at the Sun’s birth has been an ongoing [24Mg] [25Mg] 26Mg
mystery for almost half a century! 79% 10% 11%




Al % Do other Solar Systems are also born
0.7Myr with such high abundance of 26AI?

1. Its radioactive decay provided heat inside early
planetesimals that formed within the first few Myr

2. The heat led to differentiation and melting of ice even in
small planetesimals beyond the snow line

o4 _ C/K
o

(Anthropic selection as an explanation for the presence of
26A[ in the ESS has also been proposed based on its
implications on the existence of life on Earth, Gilmour &

Middleton 2009).




67| Ciesla et al. (2015) calculated the effect of
0.7 Myr _ | different water content in the planet building
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Al % Do other Solar Systems are also born
0.7Myr with such high abundance of 26AI?

The presence of water determines mineral diversity and

modification of organic molecules:

e serpentinization reactions, e.g., olivine weathering,
which is exothermic and can initiate a new chemical
heat source and further heating

* possible formation of clay minerals, clay surfaces ->
catalysis for prebiotic chemistry (e.g. Franchi et al.
2003)

* possible change of primordial organic composition,
possibility for organic synthesis



26\ J Do other Solar Systems are also born
0.7 Myr with such high abundance of 2°Al?

The Local scenario: a star d|ed nearby the blrth
of the Sun |

e.g., a hearby core-collapse
supernova (e.g. Hester et al.
2004, Pan et al. 2012); the
winds from a massive (> 30
M,) star (e.g. Gounelle &
Meynet 2012), etc.

Probability: <1% (e.g.,
Williams 2010)

Short timescales (a few Myr) star formation in a cluster requires
the mass of the polluter > 40 M, (to live < 4 Myr). This requires the

a very large cluster. In some models the distance from the stellar
source to the Sun needs to be fine-tuned.
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Results from the multi-dimensional

magnetohydrodynamics simulations
of Vasileiadis et al. (2013)
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However, stellar yields are far from been well
constrained, which poses strong limitations on the
accuracy of the present investigations of the
Global scenario



Conclusions
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2327h 3, Unterborn et al. (2015) also presented a simple
14 Gyr thermal model to evaluate the effect of different
amount of Th in extrasolar terrestrial planets.

Power produced by radiogenic sources (TW) Rayleigh Number
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Planets with higher Th possess larger Mantle convection starts earlier
energy budgets.



