HOW DO GIANT PLANETARY CORES SHAPE THE DUST DISK?

Giovanni Picogna

9th February 2016

Institut für Astronomie & Astrophysik - Universität Tübingen

The Astrophysics of Planetary Habitability - Vienna - 8-12 February 2016

CONTEXT

- dust in the region of active planet formation is visible, so it is a powerful tool to test planet formation models with observations;
- if a planetary core is able to filtrate effectively a range of dust sizes, the formation of terrestrial planets in the inner regions can be affected;
- a giant planet can sustain a long-lived vortex at the outer gap edge, for low viscosities, promoting a second generation of planets;
- a gap in the dust disc can effectively reduce the metallicity of the planetary core;
- the evolution and potential accretion of pebble-like particles on to planetary cores can be very important for giant planet formation (Lambrechts & Johansen, 2012).

- 1. what are the dust accretion rates in the various phases of planet formation?
- 2. what is the 3D structure of the dust disc interacting with a growing planet?
- 3. how are multiple giant planetary cores shaping the dust disc?
- 4. what are the dust sizes effectively filtered by a planet?

MODEL

 $\cdot\,$ Thermal mass

$$M_{\rm th} = \frac{{\rm c_s}^3}{{\rm G}\Omega_{\rm p}} = M_\star \left(\frac{H}{R}\right)^3$$

 $\cdot\,$ Thermal criterion

$$M_{\rm p} > M_{\rm th} \rightarrow q = \frac{M_{\rm p}}{M_{\star}} > \left(\frac{H}{R}\right)^3 = 1.25 \times 10^{-4}$$

· Viscous criterion

$$q \ge \frac{40\nu}{R_{\rm p}^2\Omega_{\rm p}} = 40\alpha_{\rm SS}\left(\frac{H}{R}\right)^2 = 4\times10^{-4}$$

• it quantifies the coupling between the solid and gas components and can be defined as:

$$\mathsf{F}_{\mathrm{D}} = -rac{1}{ au_{\mathrm{f}}}\Delta \mathsf{v}_{\mathrm{p}}$$

 \cdot or as the non-dimensional stopping time (Stokes number)

$$\tau_{\rm s} = \tau_{\rm f} \Omega_{\rm K} = \frac{{\rm S} \rho_{\rm s}}{\rho_{\rm g} \bar{v}_{\rm th}}$$

• it quantifies the coupling between the solid and gas components and can be defined as:

$$\mathsf{F}_{\mathrm{D}} = -rac{1}{ au_{\mathrm{f}}}\Delta \mathsf{v}_{\mathrm{p}}$$

• or as the non-dimensional stopping time (Stokes number)

$$\tau_{\rm s} = \tau_{\rm f} \Omega_{\rm K} = \frac{{\rm S} \rho_{\rm s}}{\rho_{\rm g} \overline{\rm v}_{\rm th}}$$

- Two main regimes experienced by the particles depending on their sizes:
 - Epstein regime, for $s < \lambda$, the interaction between particles and single gas molecules becomes important
 - · Stokes regime, for s >> λ , particles experience gas as a fluid

• it quantifies the coupling between the solid and gas components and can be defined as:

$$\mathsf{F}_{\mathrm{D}} = -rac{1}{ au_{\mathrm{f}}}\Delta \mathsf{v}_{\mathrm{p}}$$

• or as the non-dimensional stopping time (Stokes number)

$$\tau_{\rm s} = \tau_{\rm f} \Omega_{\rm K} = \frac{{\rm S} \rho_{\rm s}}{\rho_{\rm g} \overline{\rm v}_{\rm th}}$$

- Two main regimes experienced by the particles depending on their sizes:
 - Epstein regime, for $s < \lambda$, the interaction between particles and single gas molecules becomes important
 - · Stokes regime, for s >> λ , particles experience gas as a fluid
- we model both regimes with a smooth transition between them (Haghighipour & Boss, 2003; Woitke & Helling, 2003)

- $\cdot\,$ we use 2D FARGO and 3D PLUTO hydro codes
- we introduce a population of partially decoupled particles modeled as Lagrangian particles
- the particles are evolved using semi-implicit (leap-frog like) and fully implicit integrators (Zhu et al. 2014) in cylindrical and spherical coordinates.

HL TAU

- An outstandig example of the new data coming from the observations of planet forming regions is the HL TAU system, where axysimmetric ring structures and gaps are visible.
- with our method we scanned the parameter space in order to recreate the observed features

Figure 1: HL TAU system. Source: http://www.eso.org/public/news/eso1436/

- An outstandig example of the new data coming from the observations of planet forming regions is the HL TAU system, where axysimmetric ring structures and gaps are visible.
- with our method we scanned the parameter space in order to recreate the observed features

Physical quantity	Value
Numerical code	FARGO (2D)
Disk mass (M $_{\odot}$)	0.135
Disk extent (<i>au</i>)	[2.5,100]
Aspect ratio	0.05
Viscosity ($lpha_{ m SS}$)	0.004
Surface density profile	-1
Temperature profile	-1
EOS	Isothermal
Dust particles	1×10^{6}
Dust density (g/cm³)	2.6
Dust size (cm)	0.1,1,10,100
Star mass (M $_{\odot}$)	0.55
Planet masses ($M_{ m th}$)	1,5,10
Planet semi-major axes (au)	25,50

· mm-sized particle evolution (movie)

\cdot mm-sized particle evolution (movie)

- · mm-sized particle evolution (movie)
- $\cdot\,$ the gap is much more clear in the dust disc

- mm-sized particle evolution (movie)
- \cdot the gap is much more clear in the dust disc
- \cdot the inner planet is not able to filtrate mm size dust

11

REALISTIC PLANETARY MASSES

- \cdot The best match was obtained with an inner 0.07 $M_{\rm Jup}$ mass planet and an outer 0.35 $M_{\rm Jup}$ mass planet (Picogna & Kley, 2015).
- \cdot Taking an initial disc mass of 1/10 the original one, we can reobtain the observed gap sizes for 10 and 20 $M_\oplus.$

PARTICLE ACCRETION & FILTRATION

Physical quantity	Value
Numerical code	PLUTO (3D)
Disk mass (M $_{\odot}$)	0.01
Disk extent (au)	[2,13]
Aspect ratio	0.05
Viscosity ($lpha_{ m SS}$)	0.001
Surface density profile	-0.5
Temperature profile	-1
EOS	Isothermal
Dust particles	3.2×10^{5}
Dust density (g/cm³)	1.
Dust size (cm)	[10 ⁻² ,10 ⁶]
Star mass (M $_{\odot}$)	1.0
Planet masses (M _{th})	0.24,2.4
Planet semi-major axes (<i>au</i>)	5.2

· dust and gas evolution (movie)

Figure 2: gas density at the midplane after 182 orbits

100 earth mass planet

Figure 2: particle gap size

100 earth mass planet

Figure 2: particle vortex for 10 m (green), m (yellow), dm (black), cm (red), mm (violet) particles.

Figure 3: accretion rates for a 100 M_\oplus (left side) and 10 M_\oplus (right side) mass planets.

- 1. modeling 3D global disc with radiative transport
 - close to the planet location, the temperature can be sufficiently high to ablate and vaporize the dust
- 2. study the impact of the Vertical Shear Instability
 - the region of active planet formation are supposed to be dead zones, since the ionization level is very low
 - however there are many hydrodynamical instabilities than can occur in these regions and drive the angular momentum transport
 - the most widely applicable instability is the VSI which grows in disc models for which $d\Omega/dZ \neq 0$ and which experience thermal relaxation on dynamical time-scales or shorter (see Nelson et al. 2013, Stoll & Kley, 2014)
 - \cdot dust evolution can drastically change in this scenario (movie)

- dust gaps are wider for higher mass planets and more decoupled particles
- the HL Tau system can be explained by the presence of several massive cores (0.07M_{Jup}, 0.35M_{Jup}) shaping the dust disc
- only a narrow range of dust sizes is captured within the short-lived vortex, for realistic viscosities
- a planet is able to filtrate effectively after a few tens of orbits the particles with stopping time around unity
- the accretion of particles above 100 m and below 1 cm decreases steadily, while dust particles in between keep a steady accretion.

QUESTIONS?

 \cdot We adopted the formula by Haghighipour & Boss (2003)

$$\begin{split} \tau_{\rm s} &= \tau_{\rm f} \Omega_{\rm K} = \frac{\rho_{\bullet} a_{\bullet}}{\rho_{\rm g}} \bigg[(1-f) \overline{v}_{\rm th} + \frac{3}{8} f \mathcal{C}_{\rm D} v_{\rm rel} \bigg]^{-1} \Omega_{\rm K} \\ F_{\rm D} &= -\frac{1}{\tau_{\rm f}} \Delta v_{\rm p} \end{split}$$

 $\cdot\,$ and the one by Woitke & Helling (2003), Lyra et al. (2009)

$$C_{\rm D} = \frac{9{\rm Kn}^2 C_{\rm D}^{\rm Eps} + C_{\rm D}^{\rm Stk}}{(3{\rm Kn} + 1)^2}$$

$$C_{\rm D}^{\rm Eps} \simeq 2\sqrt{1 + \frac{128}{9\pi{\rm Ma}^2}}, \quad C_{\rm D}^{\rm Stk} = \begin{cases} 24/{\rm Re} + 3.6{\rm Re}^{-0.313} & \text{if } {\rm Re} \le 500\\ 9.5 \cdot 10^{-5}{\rm Re}^{1.397} & \text{if } 500 < {\rm Re} \le 150\\ 2.61 & \text{if } {\rm Re} > 1500 \end{cases}$$

Zhu, Z., Stone, J. M., Rafikov, R. R., & Bai, X.-n. 2014, ApJ, 785, 122