

The effects of M dwarf magnetic fields and winds on potentially habitable planets

Aline Vidotto Swiss National Science Foundation *Ambizione* Fellow University of Geneva

In collaboration with: M. Jardine (St Andrews), J.-F. Donati (Toulouse), J. Morin (Montpellier), P. Lang (St Andrews), A.J.B. Russell (Glasgow)

Habitability of planets around M dwarfs may be affected by....

- Coronal Mass Ejections
 (Khodachenko+07, Lammer+07)
- cosmic rays (Griessmeier+05,09)
- X-EUV radiation (Lammer+07)
- Planetary magnetic protection
- Stellar winds & magnetic fields

Habitability of planets around M dwarfs may be affected by....

- Coronal Mass Ejections
 (Khodachenko+07, Lammer+07)
- cosmic rays (Griessmeier+05,09)
- X-EUV radiation (Lammer+07)
- Planetary magnetic protection
- Stellar winds & magnetic fields

Habitability effect: exposure of planet's atmosphere to erosion by cosmic particles

Planetary 'magnetic shield'

Large magnetosphere

Small auroral oval α_0

$$\alpha_0 = \arcsin\left[\left(\frac{r_p}{r_M}\right)^{1/2}\right]$$

Magnetic fields and planet habitability

(Siscoe & Chen 75, Tarduno+10, Vidotto+11a, Zuluaga+12)

Precipitating electrons

- auroral emission: radio, IR, visible, UV, X-ray
- electron heating, enhancing atmospheric evaporation → blown away by the solar wind

Planetary 'magnetic shield'

Large magnetosphere

Small auroral oval α_0

Small magnetosphere

Large auroral oval α_0

 $\alpha_0 = \arcsin\left[\left(\frac{r_p}{r_M}\right)^{1/2}\right] \quad \text{(Siscoe \& Chen 75, Tarduno+10, Vidotto+11a, Zuluaga+12)}$

Magnetic fields and planet habitability

Precipitating electrons

- auroral emission: radio, IR, visible, UV, X-ray
- electron heating, enhancing atmospheric evaporation \rightarrow blown away by the solar wind

Planetary 'magnetic shield'

Large magnetosphere

Small auroral oval α_0

 $\alpha_0 = \arcsin\left[\left(\frac{r_p}{r_M}\right)^{1/2}\right] \quad \text{(Siscoe \& Chen 75, Tarduno+10, Vidotto+11a, Zuluaga+12)}$

Magnetic fields and planet habitability

Small magnetosphere

Large auroral oval α_0

Precipitating electrons

- auroral emission: radio, IR, visible, UV, X-ray
- electron heating, enhancing atmospheric evaporation \rightarrow blown away by the solar wind

Potential impact on habitability

Interaction: Sun-Earth

• Pressure balance between the stellar coronal medium and the planet

$$\rho u_{\rm rel}^2 + \frac{[B_{\star}(R_{\rm orb})]^2}{8\pi} + p = \frac{[B_p(r_M)]^2}{8\pi} + p_p$$

Interaction: Sun-Earth

• Pressure balance between the stellar coronal medium and the planet

Interaction: Sun-Earth

• Pressure balance between the stellar coronal medium and the planet

(Chapman & Ferraro 1930)

• Pressure balance between the stellar coronal medium and the planet

$$\rho u_{\rm rel}^2 + \frac{[B_{\star}(R_{\rm orb})]^2}{8\pi} + p = \frac{[B_p(r_M)]^2}{8\pi} + p_p$$

• Pressure balance between the stellar coronal medium and the planet

$$\rho u_{\rm rel}^2 + \frac{[B_{\star}(R_{\rm orb})]^2}{8\pi} + p = \frac{[B_p(r_M)]^2}{8\pi} + p_p$$

negligible @ rM

Pressure balance between the stellar coronal medium and the planet

• Pressure balance between the stellar coronal medium and the planet

Pressure balance between the stellar coronal medium and the planet

• Pressure balance between the stellar coronal medium and the planet

Magnetic fields and planet habitability

From observations

Pressure balance between the stellar coronal medium and the planet

How do we image stellar magnetic fields?

Zeeman Doppler imaging: magnetic fields of cool stars

How do we image stellar magnetic fields?

Zeeman Doppler imaging: magnetic fields of cool stars

Vidotto+2016b

2187

1312

437

-437

-1312

-2187

8.3

5.0

1.7

വ്

G

` -1.7 ^{مصّ}

-5.0

-8.3

G

ഫ്

The magnetic field at the planet's orbit

"Potential field source surface extrapolation" (Altschuler & Newkirk 69, Jardine+99) $\nabla \times \mathbf{B} = 0 \to \mathbf{B} = -\nabla \Psi$ $\nabla \cdot \mathbf{B} = 0 \to \nabla^2 \Psi = 0$

Part 1: Active M dwarf planet hosts

The sample of dM stars

Data from: Donati+08, Morin+08,10

Star	Year	Sp.	<i>M</i> _*	<i>R</i> _*	P _{rot}	$\langle B_{\star}^{\rm ZDI} \rangle$
ID	obs.	type	(<i>M</i> _☉)	(<i>R</i> _☉)	(d)	(G)
GJ 182	2007	M0.5	0.75	0.82	4.35	172
DT Vir	2008	M0.5	0.59	0.53	2.85	149
DS Leo	2008	M 0	0.58	0.52	14.00	87
GJ 49	2007	M1.5	0.57	0.51	18.60	27
OT Ser	2008	M1.5	0.55	0.49	3.40	123
CE Boo	2008	M2.5	0.48	0.43	14.70	103
AD Leo	2008	M3	0.42	0.38	2.24	180
EQ Peg A	2006	M3.5	0.39	0.35	1.06	480
EV Lac	2007	M3.5	0.32	0.30	4.37	490
V374 Peg	2006	M 4	0.28	0.28	0.45	640
EQ Peg B	2006	M4.5	0.25	0.25	0.40	450
GJ 1156	2009	M5	0.14	0.16	0.49	100
GJ 1245 B	2008	M5.5	0.12	0.14	0.71	60
WX UMa	2009	M6	0.10	0.12	0.78	1060
DX Cnc	2009	M6	0.10	0.11	0.46	80

 $\frac{r_M}{R_p} \lesssim \left(\frac{B_{\text{pole}}/2}{B_{\star}(R_{\text{orb}})}\right)^{1/3}$

- Unprotected area of the planet:
 - ▶ 11-100% if at inner HZ
 - ▶ 5-44% if at outer HZ

- Unprotected area of the planet:
 - ▶ 11-100% if at inner HZ
 - ▶ 5-44% if at outer HZ

- Active dM stars:
 - habitability → imperative that planets can regenerate their atmospheres

Part 2: Weakly-active M dwarf planet hosts

fast rotators: star evolves, slow rotators: efficient dynamo, lose angular inefficient dynamo, large B momentum small B through winds 14 Present-day Earth`s magnetospheric size Magnetospheric size (r_p) 12 10 8 6 4 2 0.2 0.8 0.4 0.6 Stellar mass (M_{sun})

age

fast rotators: star evolves, slow rotators: efficient dynamo, lose angular inefficient dynamo, large B momentum small B through winds 14 Present-day Earth`s magnetospheric size Magnetospheric size (r_p) 12 10 age 8 6 4 2 0.2 0.8 0.4 0.6 Stellar mass (M_{sun})

age

fast rotators: star evolves, slow rotators: efficient dynamo, lose angular inefficient dynamo, large B momentum small B through winds age 14 Present-day Earth`s magnetospheric size Magnetospheric size (r_p) 12 10 age How long 8 does it take? 6 4 2 0.2 0.4 0.6 0.8 Stellar mass (M_{sun})

Instead of 'how old?' we ask 'how slow?'

• Empirical magnetism-rotation relations:

Instead of 'how old?' we ask 'how slow?'

• Empirical magnetism-rotation relations:

Instead of 'how old?' we ask 'how slow?'

• Empirical magnetism-rotation relations:

How slow should dM stars rotate so that a planet at the HZ would have an Earth-sized magnetosphere?

- early- and mid-dM stars: Prot > 35 154 days
- late-dM stars: Prot > 49 200 days

 Fraction of inactive (slowly rotating stars) decreases at later spectral types

- Fraction of inactive (slowly rotating stars) decreases at later spectral types
- For late dMs: rotational braking timescales (~6-10 Gyr) >> timescale for dipole-dominated planetary fields (Zuluaga & Cuartas 12)
 - difficult for <u>old</u> Earth-like planet to generate significant fields

- Fraction of inactive (slowly rotating stars) decreases at later spectral types
- For late dMs: rotational braking timescales (~6-10 Gyr) >> timescale for dipole-dominated planetary fields (Zuluaga & Cuartas 12)
 - difficult for <u>old</u> Earth-like planet to generate significant fields
- conditions are more easily achieved for planets orbiting slowly rotating early- and mid-dM stars

Conclusions: Earth-like planets around dM stars

1.<u>Active dMs:</u>

Planets with similar terrestrial magnetisation present <u>smaller</u> magnetospheric sizes than the Earth's one, with <u>larger</u> open area \rightarrow potential impact on habitability?

imperative that planets can regenerate their atmospheres

2.<u>Inactive dMs:</u>

Most suitable targets to host planets with $r_M \approx r_{M,\oplus}$, are slowly rotating early- and mid-dM stars.

IAU Symposium 328 "Living around active stars"

Maresias, Brazil 17-21 October

- Divisions E (Sun and Heliosphere)
- Division F (Planetary systems & Bioastronomy)
- Division G (Stars & Stellar Physics)

Maresias Beach Hotel: http://www.maresiasbeachhotel.com.br

Extra slides

1. How do we characterise the interplanetary medium?

Characterising the background stellar wind

Magnetic field from observations

Characterising the background stellar wind

Magnetic field from observations

<u>Initial state</u>: potential field incorporated in MHD simulations

Characterising the background stellar wind

Magnetic field from observations

→ more on the technique &
 other objects: Vidotto+09a,
 10ab,11a,12,14a,15; etc

<u>Final state</u>: self-consistent MHD wind solution

<u>Initial state</u>: potential field incorporated in MHD simulations

Interplanetary medium: filled with stellar wind particles and magnetic fields

Compared to the Earth: close-in location of hot-Jupiters implies they interact with

- higher density external environment
- higher ambient magnetic fields
- lower wind velocities (acceleration zone)
- higher orbital velocities

Even harsher environment once CMEs/flares impact on exoplanets

Including observed maps in the simulations: earlydM

- Clusters: Same rotation period, mass, radius, but different magnetic field topology & intensity:
 - Wind?

ST

M0.5

M0.5

M0

M1.5

M1.5

M2.5

AM loss?

 M_{\star}

 (M_{\odot})

0.75

0.59

0.58

0.57

0.55

0.48

 $P_{\rm rot}$

(d)

4.35

2.85

14.0

18.6

3.40

14.7

 R_{\star}

 (R_{\odot})

0.82

0.53

0.52

0.51

0.49

0.43

Including observed maps in the simulations: earlydM

- Base density: $n_0=10^{11}$ cm-3
- Base temperature: $T_0=2x10^6$ K
- 6 objects \rightarrow 9 maps
 - Wind solution for all of them
 - Calculate dJ/dt and dM/dt

Assumption: Earth analog

- dipolar B_{planet}
- @ pole: $B_{p,0} \approx 1G$

r_M=11.7R_p (present-day)
 r_M=5R_p (young Earth)

Magnetic fields and planet habitability

Star	Year	Sp.	<i>M</i> _*	$B_{p,0}^{\min}$ (G)	$B_{p,0}^{\min\dagger}$ (G)
ID	obs.	type	(<i>M</i> _☉)	[present]	[young]
GJ 182	2007	M0.5	0.75	[7.3, 51]	[0.57, 4.0]
DT Vir	2008	M0.5	0.59	[3.7, 26]	[0.29, 2.1]
DS Leo	2008	M 0	0.58	[2.6, 18]	[0.20, 1.4]
GJ 49	2007	M1.5	0.57	[1.8, 13]	[0.14, 0.98]
OT Ser	2008	M1.5	0.55	[9.4,68]	[0.73, 5.3]
CE Boo	2008	M2.5	0.48	[15, 110]	[1.2, 8.5]
AD Leo	2008	M3	0.42	[26, 190]	[2.1, 15]
EQ Peg A	2006	M3.5	0.39	[38, 280]	[2.9, 22]
EV Lac	2007	M3.5	0.32	[59, 430]	[4.6, 34]
V374 Peg	2006	M 4	0.28	[75, 560]	[5.9, 44]
EQ Peg B	2006	M4.5	0.25	[67, 500]	[5.2, 39]
GJ 1156	2009	M5	0.14	[13, 98]	[1.0, 7.6]
GJ 1245 B	2008	M5.5	0.12	[12, 94]	[0.95, 7.4]
WX UMa	2009	M6	0.10	[510, 4100]	[40, 320]
DX Cnc	2009	M6	0.10	[16, 130]	[1.2, 10.0]

Assumption: Earth analog

Star	Year	Sp.	M_*	$B_{p,0}^{\min}$ (G)	$B_{p,0}^{\min \dagger}$ (G)
ID	obs.	type	(<i>M</i> _☉)	[present]	[young]
GJ 182	2007	M0.5	0.75	[7.3, 51]	[0.57, 4.0]
DT Vir	2008	M0.5	0.59	[3.7, 26]	[0.29, 2.1]
DS Leo	2008	M 0	0.58	[2.6, 18]	[0.20, 1.4]
GJ 49	2007	M1.5	0.57	[1.8, 13]	[0.14, 0.98]
OT Ser	2008	M1.5	0.55	[9.4, 68]	[0.73, 5.3]
CE Boo	2008	M2.5	0.48	[15, 110]	[1.2, 8.5]
AD Leo	2008	M3	0.42	[26, 190]	[2.1, 15]
EQ Peg A	2006	M3.5	0.39	[38, 280]	[2.9, 22]
EV Lac	2007	M3.5	0.32	[59, 430]	[4.6, 34]
V374 Peg	2006	M 4	0.28	[75, 560]	[5.9, 44]
EQ Peg B	2006	M4.5	0.25	[67, 500]	[5.2, 39]
GJ 1156	2009	M5	0.14	[13, 98]	[1.0, 7.6]
GJ 1245 B	2008	M5.5	0.12	[12, 94]	[0.95, 7.4]
WX UMa	2009	M6	0.10	[510, 4100]	[40, 320]
DX Cnc	2009	M6	0.10	[16, 130]	[1.2, 10.0]

Assumption: Earth analog

• dipolar B_{planet}

Star	Year	Sp.	<i>M</i> _*	$B_{p,0}^{\min}$ (G)	$B_{p,0}^{\min\dagger}$ (G)
ID	obs.	type	(<i>M</i> _☉)	[present]	[young]
GJ 182	2007	M0.5	0.75	[7.3, 51]	[0.57, 4.0]
DT Vir	2008	M0.5	0.59	[3.7, 26]	[0.29, 2.1]
DS Leo	2008	M 0	0.58	[2.6, 18]	[0.20, 1.4]
GJ 49	2007	M1.5	0.57	[1.8, 13]	[0.14, 0.98]
OT Ser	2008	M1.5	0.55	[9.4,68]	[0.73, 5.3]
CE Boo	2008	M2.5	0.48	[15, 110]	[1.2, 8.5]
AD Leo	2008	M3	0.42	[26, 190]	[2.1, 15]
EQ Peg A	2006	M3.5	0.39	[38, 280]	[2.9, 22]
EV Lac	2007	M3.5	0.32	[59, 430]	[4.6, 34]
V374 Peg	2006	M 4	0.28	[75, 560]	[5.9, 44]
EQ Peg B	2006	M4.5	0.25	[67, 500]	[5.2, 39]
GJ 1156	2009	M5	0.14	[13, 98]	[1.0, 7.6]
GJ 1245 B	2008	M5.5	0.12	[12, 94]	[0.95, 7.4]
WX UMa	2009	M6	0.10	[510, 4100]	[40, 320]
DX Cnc	2009	M6	0.10	[16, 130]	[1.2, 10.0]

Assumption: Earth analog

- dipolar B_{planet}
- @ the HZ

Star	Year	Sp.	M_*	$B_{p,0}^{\min}$ (G)	$B_{p,0}^{\min \dagger}$ (G)
ID	obs.	type	(<i>M</i> _☉)	[present]	[young]
GJ 182	2007	M0.5	0.75	[7.3, 51]	[0.57, 4.0]
DT Vir	2008	M0.5	0.59	[3.7, 26]	[0.29, 2.1]
DS Leo	2008	M 0	0.58	[2.6, 18]	[0.20, 1.4]
GJ 49	2007	M1.5	0.57	[1.8, 13]	[0.14, 0.98]
OT Ser	2008	M1.5	0.55	[9.4, 68]	[0.73, 5.3]
CE Boo	2008	M2.5	0.48	[15, 110]	[1.2, 8.5]
AD Leo	2008	M3	0.42	[26, 190]	[2.1, 15]
EQ Peg A	2006	M3.5	0.39	[38, 280]	[2.9, 22]
EV Lac	2007	M3.5	0.32	[59, 430]	[4.6, 34]
V374 Peg	2006	M 4	0.28	[75, 560]	[5.9, 44]
EQ Peg B	2006	M4.5	0.25	[67, 500]	[5.2, 39]
GJ 1156	2009	M5	0.14	[13, 98]	[1.0, 7.6]
GJ 1245 B	2008	M5.5	0.12	[12, 94]	[0.95, 7.4]
WX UMa	2009	M6	0.10	[510, 4100]	[40, 320]
DX Cnc	2009	M6	0.10	[16, 130]	[1.2, 10.0]

า	Star	Year	Sp.	M_*	$B_{p,0}^{\min}$ (G)	$B_{p,0}^{\min \dagger}$ (G)
	ID	obs.	type	(M_{\odot})	[present]	[young]
	GJ 182	2007	M0.5	0.75	[7.3, 51]	[0.57, 4.0]
	DT Vir	2008	M0.5	0.59	[3.7, 26]	[0.29, 2.1]
	DS Leo	2008	M 0	0.58	[2.6, 18]	[0.20, 1.4]
	GJ 49	2007	M1.5	0.57	[1.8, 13]	[0.14, 0.98]
	OT Ser	2008	M1.5	0.55	[9.4, 68]	[0.73, 5.3]
	CE Boo	2008	M2.5	0.48	[15, 110]	[1.2, 8.5]
	AD Leo	2008	M3	0.42	[26, 190]	[2.1, 15]
	EQ Peg A	2006	M3.5	0.39	[38, 280]	[2.9, 22]
т I Х	EV Lac	2007	M3.5	0.32	[59, 430]	[4.6, 34]
ent-day)	V374 Peg	2006	M 4	0.28	[75, 560]	[5.9, 44]
	EQ Peg B	2006	M4.5	0.25	[67, 500]	[5.2, 39]
	GJ 1156	2009	M5	0.14	[13, 98]	[1.0, 7.6]
	GJ 1245 B	2008	M5.5	0.12	[12, 94]	[0.95, 7.4]
	WX UMa	2009	M6	0.10	[510, 4100]	[40, 320]
	DX Cnc	2009	M6	0.10	[16, 130]	[1.2, 10.0]

Minimum planetary magnetic fields

Assumption: **Earth** analog

- dipolar B_{planet}
- @ the HZ
 - r_M=11.7R_p (present-day)

Assumption: Earth analog

- dipolar B_{planet}
- @ the HZ
 - r_M=11.7R_p (present-day)
 r_M=5R_p (young Earth)

Star	Year	Sp.	М.	$B_{p,0}^{\min}$ (G)	$B_{p,0}^{\min\dagger}$ (G)
ID	obs.	type	(<i>M</i> _☉)	[present]	[young]
GJ 182	2007	M0.5	0.75	[7.3, 51]	[0.57, 4.0]
DT Vir	2008	M0.5	0.59	[3.7, 26]	[0.29, 2.1]
DS Leo	2008	M 0	0.58	[2.6, 18]	[0.20, 1.4]
GJ 49	2007	M1.5	0.57	[1.8, 13]	[0.14, 0.98]
OT Ser	2008	M1.5	0.55	[9.4,68]	[0.73, 5.3]
CE Boo	2008	M2.5	0.48	[15, 110]	[1.2, 8.5]
AD Leo	2008	M3	0.42	[26, 190]	[2.1, 15]
EQ Peg A	2006	M3.5	0.39	[38, 280]	[2.9, 22]
EV Lac	2007	M3.5	0.32	[59, 430]	[4.6, 34]
V374 Peg	2006	M 4	0.28	[75, 560]	[5.9, 44]
EQ Peg B	2006	M4.5	0.25	[67, 500]	[5.2, 39]
GJ 1156	2009	M5	0.14	[13, 98]	[1.0, 7.6]
GJ 1245 B	2008	M5.5	0.12	[12, 94]	[0.95, 7.4]
WX UMa	2009	M6	0.10	[510, 4100]	[40, 320]
DX Cnc	2009	M6	0.10	[16, 130]	[1.2, 10.0]

Assumption: Earth analog

- dipolar B_{planet}
- @ the HZ
 - r_M=11.7R_p (present-day)
 - r_M=5R_p (young Earth) Possible to generate/ sustain such large B_{pl}?

Minimum planetary magnetic fields

Star	Year	Sp.	M_*	$B_{p,0}^{\min}$ (G)	$B_{p,0}^{\min\dagger}$ (G)
ID	obs.	type	(M_{\odot})	[present]	[young]
GJ 182	2007	M0.5	0.75	[7.3, 51]	[0.57, 4.0]
DT Vir	2008	M0.5	0.59	[3.7, 26]	[0.29, 2.1]
DS Leo	2008	M 0	0.58	[2.6, 18]	[0.20, 1.4]
GJ 49	2007	M1.5	0.57	[1.8, 13]	[0.14, 0.98]
OT Ser	2008	M1.5	0.55	[9.4,68]	[0.73, 5.3]
CE Boo	2008	M2.5	0.48	[15, 110]	[1.2, 8.5]
AD Leo	2008	M3	0.42	[26, 190]	[2.1, 15]
EQ Peg A	2006	M3.5	0.39	[38, 280]	[2.9, 22]
EV Lac	2007	M3.5	0.32	[59, 430]	[4.6, 34]
V374 Peg	2006	M 4	0.28	[75, 560]	[5.9, 44]
EQ Peg B	2006	M4.5	0.25	[67, 500]	[5.2, 39]
GJ 1156	2009	M5	0.14	[13, 98]	[1.0, 7.6]
GJ 1245 B	2008	M5.5	0.12	[12, 94]	[0.95, 7.4]
WX UMa	2009	M6	0.10	[510, 4100]	[40, 320]
DX Cnc	2009	M6	0.10	[16, 130]	[1.2, 10.0]

26